image/svg+xml
Randomised Benchmarking
image/svg+xml
(RB)
image/svg+xml
image/svg+xml
Project by
Supervised by
Dr Koh Teck Seng
Zaw Lin Htoo
Plus applications in the triple quantum dot qubit
with Gate-Dependent Noise
image/svg+xml
Noise in Quantum Computers
image/svg+xml
The RB Protocol
image/svg+xml
Triple Quantum Dot
image/svg+xml
Noise in Quantum Computers
image/svg+xml
image/svg+xml
1
image/svg+xml
qubit
image/svg+xml
state:
image/svg+xml
|0⟩
image/svg+xml
|0⟩
image/svg+xml
|1⟩
image/svg+xml
+
image/svg+xml
−
image/svg+xml
cos
(θ/2)
image/svg+xml
e
sin
(θ/2)
iϕ
image/svg+xml
|ψ⟩
image/svg+xml
image/svg+xml
X
image/svg+xml
image/svg+xml
image/svg+xml
representing data
quantum states (“
qubits
”)
image/svg+xml
logical operations
unitary evolution (“
gates
”)
image/svg+xml
½–spin:
|↑
z
⟩, |↓
z
⟩
image/svg+xml
superposition
entanglement
Quantum Phenomena
image/svg+xml
should give
image/svg+xml
Enormous Speedups
database search
(Grover, 1996)
integer factoring
(Shor, 1999)
linear equations
(Harrow et al., 2009)
image/svg+xml
But quantum computers are inherently noisy!
(Kalai 2011)
image/svg+xml
Unable to carry out arbitrarily long & complex calculations
image/svg+xml
Fault Tolerant Threshold Theorem
image/svg+xml
image/svg+xml
Example: Shor's Algorithm
image/svg+xml
(Häner, Roetteler, & Svore, 2017)
image/svg+xml
image/svg+xml
m
~ 2,000 for a 2-bit number
image/svg+xml
m
~ 8,000 for a 4-bit number
image/svg+xml
Even with 0.1% error rate, accumulates to
image/svg+xml
~82% error rate for 2 bits
image/svg+xml
~99.97% error rate for 4 bits
image/svg+xml
…
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
If error rate below certain threshold, arbitrarily long
calculations can be carried out
(Aharonov & Ben-Or, 2008)
image/svg+xml
“The entire content of the Threshold Theorem is that
you're correcting errors faster than they're created.”
image/svg+xml
— Scott Aaronson
image/svg+xml
from
Quantum Computing since Democritus (2013)
image/svg+xml
Characterising Noise
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
Want to carry out a gate
image/svg+xml
But actual implemented
gate will have noise
image/svg+xml
Noisy gate is ideal gate
with some noise process
image/svg+xml
Goal is to characterise the error
rate of this noise process
image/svg+xml
Quantum Process Tomography
Treat noise process as a black box, measure how channel
transforms input to reconstruct process
(Chuang & Nielsen, 1997)
Chow, J. M., Gambetta, J. M., Tornberg, L., Koch, J., Bishop, L. S., Houck, A. A., ... Schoelkopf, R. J. (2009).
Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit.
Physical Review Letters, 102
(9). https://doi.org/10.1103/physrevlett.102.090502
*(Chow et al., 2009)
Chuang, I. L., & Nielsen, M. A. (1997). Prescription for experimental determination of the
dynamics of a quantum black box.
Journal of Modern Optics, 44
(11-12), 2455–2467.
https://doi.org/10.1080/09500349708231894
image/svg+xml
Λ
image/svg+xml
image/svg+xml
Assumption:
these states
can be prepared
perfectly
image/svg+xml
Assumption:
these states
can be measured
perfectly
image/svg+xml
Need to prepare and measure the state in every basis state
image/svg+xml
Noise in the state preparation and measurement (SPAM)
is included in
Λ
due to this assumption
image/svg+xml
Due to SPAM errors, over-reports gate error
(Chow et al., 2009)
,
the key consideration for the fault-tolerant threshold theorem
image/svg+xml
input
↑
x
↑
y
↑
z
↓
z
image/svg+xml
image/svg+xml
measure
x, y, z
image/svg+xml
image/svg+xml
2 −2
parameters
2n
4n
image/svg+xml
not scalable
image/svg+xml
image/svg+xml
SPAM errors
image/svg+xml
doesn't reflect gate error
image/svg+xml
image/svg+xml
How to characterise gate noise in a scalable manner
that is independent of SPAM errors?
image/svg+xml
Two main ideas
image/svg+xml
1. Accumulating Noise
image/svg+xml
2. Twirling
image/svg+xml
Accumulating Noise
image/svg+xml
image/svg+xml
…
image/svg+xml
Λ
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
Λ
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
Λ
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
As
m
increases, so does the noise, independently of SPAM
image/svg+xml
But might accumulate differently
image/svg+xml
for different types of noise
image/svg+xml
image/svg+xml
Possible to get
consistent behaviour?
image/svg+xml
Twirling
image/svg+xml
image/svg+xml
“Average out” the noise channel
image/svg+xml
=
1
image/svg+xml
Example: Amplitude Damping
image/svg+xml
Shrinks Bloch sphere towards ground state
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
p
image/svg+xml
Shrinks Bloch sphere uniformly
image/svg+xml
Depolarising channel
image/svg+xml
image/svg+xml
Same behaviour for all
Λ
image/svg+xml
Λ
and have the same error rate
image/svg+xml
(Magesan, Gambetta, & Emerson, 2012)
image/svg+xml
The RB Protocol
image/svg+xml
image/svg+xml
…
…
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
image/svg+xml
m
times
image/svg+xml
1. Choose a random sequence of gates of length
m
image/svg+xml
2. Define final inverting gate
image/svg+xml
3. Input a state, then measure the probability
of obtaining the same state as
F
m
image/svg+xml
4. Repeat with
K
random sequences of length
m
image/svg+xml
5. Repeat with other values of
m
image/svg+xml
Each depolarising channel uniformly shrinks Bloch
sphere by a factor of
p
image/svg+xml
Survival probability F is fitted
to an exponential model
image/svg+xml
F(m) = p +
m
A B
image/svg+xml
A B
image/svg+xml
Coefficients A & B absorb SPAM errors
image/svg+xml
r =
(d−1)(1−p)
d
Average gate error
image/svg+xml
Twirling — All noise types exhibit same behaviour
Fitted depolarising parameter recovers average gate error
image/svg+xml
Depolarising
Bitflip
Random
Unitary
Λ
Noise type
Amplitude Damping
image/svg+xml
image/svg+xml
actual
error rate
image/svg+xml
image/svg+xml
SPAM Errors — Same gate error, different SPAM error
Fitted depolarising parameter recovers average gate error
image/svg+xml
image/svg+xml
image/svg+xml
actual
error rate
image/svg+xml
image/svg+xml
Conclusion
image/svg+xml
Advantages
image/svg+xml
Scales polynomially with
n
image/svg+xml
(Magesan, Gambetta, & Emerson, 2012)
image/svg+xml
A&B
absorbs SPAM errors
image/svg+xml
Disadvantages
image/svg+xml
Only returns
r
image/svg+xml
Pathological cases
(Proctor et al., 2017)
image/svg+xml
image/svg+xml
A likely candidate for large-scale
quantum computation
(Tarucha et al., 2016)
image/svg+xml
— Long coherence times
(Fujisawa et al., 2002)
image/svg+xml
— Ability to initialise and
measure spin
(Ono, 2002)
image/svg+xml
— Compatibility with mature
semiconductor technology
(Ono, Mori, & Moriyama 2019)
image/svg+xml
The Triple Quantum Dot Qubit
image/svg+xml
image/svg+xml
Future Work
image/svg+xml
image/svg+xml
Conclusion
image/svg+xml
image/svg+xml
t
l
t
r
ε
m
ε
ε
Adapted from Shim & Tahan (2016)
image/svg+xml
States
Spin of electrons
in quantum dots
image/svg+xml
Electrically controlled
tunneling and detuning
Logical
operations
image/svg+xml
image/svg+xml
image/svg+xml
Introduced to control parameters
image/svg+xml
Appears in quantum materials
(Paladino et al., 2014)
image/svg+xml
Ubiquitous in electronics
(Wong, 2003)
image/svg+xml
1/f noise
image/svg+xml
Sweet spot
image/svg+xml
image/svg+xml
Region where researchers have
found dephasing time to be longest
(Russ & Burkard, 2017; Shim & Tahan, 2016)
image/svg+xml
RB shows that operating in the
sweet spot minimises error
image/svg+xml
Sweet spot
image/svg+xml
only detuning noise
image/svg+xml
only tunneling noise
image/svg+xml
Tunneling noise introduces fluctuations to the sweet spot behaviour
image/svg+xml
Sensitivity to noise
image/svg+xml
detuning noise
image/svg+xml
tunneling noise
image/svg+xml
Triple quantum dot qubit is more sensitive to tunneling noise
image/svg+xml
attempts at inferring from
the sweet spot behaviour
image/svg+xml
●
●
●
●
●
●
●
●
●
●
●
●
●
●
0
0.25
0.5
0.75
1
image/svg+xml
attempts at interleaved
benchmarking
(Magesan et al., 2012)
image/svg+xml
Need other methods to differentiate
detuning and tunnelling noise
image/svg+xml
image/svg+xml
Improve pulse sequences
image/svg+xml
image/svg+xml
Existing error-correcting pulse
sequences
(Witzel & Sarma, 2007;
Wang et al., 2014)
not applicable
image/svg+xml
Need coding scheme based on
limitations and noise characteristics
image/svg+xml
Error-correcting pulse sequences,
RB as a diagnostic tool
(Zhang et al., 2017)
image/svg+xml
Randomised benchmarking verifies sweet spot behaviour
image/svg+xml
Reveals sensitivity of qubit to tunneling noise
image/svg+xml
More work needs to be done to
distinguish detuning and tunneling noise
image/svg+xml
Diagnostic tool to develop and test pulse sequences
image/svg+xml
References
image/svg+xml
image/svg+xml
Aaronson, S. (2013).
Quantum Computing since Democritus
. Cambridge University Press.
Fujisawa, T., Austing, D. G., Tokura, Y., Hirayama, Y., & Tarucha, S. (2002). Allowed and forbidden transitions in artificial hydrogen and helium atoms.
Nature, 419
(6904), 278–281. https://doi.org/10.1038/nature00976
Häner, T., Roetteler, M., & Svore, K. M. (2017). Factoring using 2n+2 qubits with Toffoli based modular multiplication.
Quantum Information and
Computation, 17
(7 & 8), 0673-0684.
Kalai, G. (2011). How quantum computers fail: quantum codes, correlations in physical systems, and noise accumulation. arXiv preprint arXiv:1106.0485.
Retrieved from https://arxiv.org/pdf/1106.0485
Grover, L. K. (1996). A fast quantum mechanical algorithm for database search.
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing - STOC 96
. https://doi.org/10.1145/237814.237866
Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum Algorithm for Linear Systems of Equations.
Physical Review Letters, 103
(15).
https://doi.org/10.1103/physrevlett.103.150502
Aharonov, D., & Ben-Or, M. (2008). Fault-tolerant quantum computation with constant error.
SIAM Journal on Computing, 38
(4), 1207–1282.
https://doi.org/10.1137/s0097539799359385
Chow, J. M., Gambetta, J. M., Tornberg, L., Koch, J., Bishop, L. S., Houck, A. A., ... Schoelkopf, R. J. (2009). Randomized Benchmarking and Process
Tomography for Gate Errors in a Solid-State Qubit.
Physical Review Letters, 102
(9). https://doi.org/10.1103/physrevlett.102.090502
Chuang, I. L., & Nielsen, M. A. (1997). Prescription for experimental determination of the dynamics of a quantum black box.
Journal of Modern Optics,
44
(11-12), 2455–2467. https://doi.org/10.1080/09500349708231894
image/svg+xml
Tarucha, S., Yamamoto, M., Oiwa, A., Choi, B.-S., & Tokura, Y. (2016). Spin Qubits with Semiconductor Quantum Dots.
Principles and Methods of Quantum
Information Technologies Lecture Notes in Physics
, 541–567. https://doi.org/10.1007/978-4-431-55756-2_25
Shim, Y.-P., & Tahan, C. (2016). Charge-noise-insensitive gate operations for always-on, exchange-only qubits.
Physical Review B, 93
(12).
https://doi.org/10.1103/physrevb.93.121410
Russ, M., & Burkard, G. (2017). Three-electron spin qubits.
Journal of Physics: Condensed Matter, 29
(39), 393001. https://doi.org/10.1088/1361-648x/aa761f
Witzel, W. M., & Sarma, S. D. (2007). Multiple-Pulse Coherence Enhancement of Solid State Spin Qubits.
Physical Review Letters,
98(7).
https://doi.org/10.1103/physrevlett.98.077601
Wang, X., Bishop, L. S., Barnes, E., Kestner, J. P., & Sarma, S. D. (2014). Robust quantum gates for singlet-triplet spin qubits using composite pulses.
Physical Review A, 89
(2). https://doi.org/10.1103/physreva.89.022310
Zhang, C., Throckmorton, R. E., Yang, X.-C., Wang, X., Barnes, E., & Sarma, S. D. (2017). Randomized Benchmarking of Barrier versus Tilt Control of a
Singlet-Triplet Qubit.
Physical Review Letters, 118
(21). https://doi.org/10.1103/physrevlett.118.216802
Proctor, T., Rudinger, K., Young, K., Sarovar, M., & Blume-Kohout, R. (2017). What Randomized Benchmarking Actually Measures.
Physical Review Letters,
119
(13). https://doi.org/10.1103/physrevlett.119.130502
Shor, P. W. (1999). Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
SIAM Review, 41
(2), 303–332.
https://doi.org/10.1137/s0036144598347011
Paladino, E., Galperin, Y. M., Falci, G., & Altshuler, B. L. (2014). 1/f noise: Implications for solid-state quantum information.
Reviews of Modern Physics,
86
(2), 361–418. https://doi.org/10.1103/revmodphys.86.361
Ono, K., Mori, T., & Moriyama, S. (2019). High-temperature operation of a silicon qubit.
Scientific Reports, 9
(1). https://doi.org/10.1038/s41598-018-36476-z
Ono, K. (2002). Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System.
Science, 297
(5585), 1313-1317.
https://doi.org/10.1126/science.1070958
Magesan, E., Gambetta, J. M., & Emerson, J. (2012). Characterizing quantum gates via randomized benchmarking.
Physical Review A, 85
(4).
https://doi.org/10.1103/physreva.85.042311
image/svg+xml
9
8
7
6
5
4
3
2
1
0
image/svg+xml
9
8
7
6
5
4
3
2
1
image/svg+xml
/27
default